Premium
Proteolysis‐targeting chimeras in drug development: A safety perspective
Author(s) -
Moreau Kevin,
Coen Muireann,
Zhang Andrew X.,
Pachl Fiona,
Castaldi M. Paola,
Dahl Goran,
Boyd Helen,
Scott Clay,
Newham Pete
Publication year - 2020
Publication title -
british journal of pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.432
H-Index - 211
eISSN - 1476-5381
pISSN - 0007-1188
DOI - 10.1111/bph.15014
Subject(s) - proteolysis , proteasome , ubiquitin , biology , in vivo , chimera (genetics) , protein degradation , drug discovery , computational biology , pharmacology , microbiology and biotechnology , bioinformatics , biochemistry , genetics , gene , enzyme
Proteolysis‐targeting chimeras are a new drug modality that exploits the endogenous ubiquitin proteasome system to degrade a protein of interest for therapeutic benefit. As the first‐generation of proteolysis‐targeting chimeras have now entered clinical trials for oncology indications, it is timely to consider the theoretical safety risks inherent with this modality which include off‐target degradation, intracellular accumulation of natural substrates for the E3 ligases used in the ubiquitin proteasome system, proteasome saturation by ubiquitinated proteins, and liabilities associated with the “hook effect” of proteolysis‐targeting chimeras This review describes in vitro and non‐clinical in vivo data that provide mechanistic insight of these safety risks and approaches being used to mitigate these risks in the next generation of proteolysis‐targeting chimera molecules to extend therapeutic applications beyond life‐threatening diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom