z-logo
open-access-imgOpen Access
Single human oocyte transcriptome analysis reveals distinct maturation stage‐dependent pathways impacted by age
Author(s) -
Llonch Sílvia,
Barragán Montserrat,
Nieto Paula,
Mallol Anna,
ElosuaBayes Marc,
Lorden Patricia,
Ruiz Sara,
Zambelli Filippo,
Heyn Holger,
Vassena Rita,
Payer Bernhard
Publication year - 2021
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.13360
Subject(s) - biology , transcriptome , oocyte , germinal vesicle , gene , genetics , in vitro maturation , andrology , microbiology and biotechnology , gene expression , embryo , medicine
Abstract Female fertility is inversely correlated with maternal age due to a depletion of the oocyte pool and a reduction in oocyte developmental competence. Few studies have addressed the effect of maternal age on the human mature oocyte (MII) transcriptome, which is established during oocyte growth and maturation, however, the pathways involved remain unclear. Here, we characterize and compare the transcriptomes of a large cohort of fully grown germinal vesicle stage (GV) and in vitro matured (IVM‐MII) oocytes from women of varying reproductive age. First, we identified two clusters of cells reflecting the oocyte maturation stage (GV and IVM‐MII) with 4445 and 324 putative marker genes, respectively. Furthermore, we identified genes for which transcript representation either progressively increased or decreased with age. Our results indicate that the transcriptome is more affected by age in IVM‐MII oocytes (1219 genes) than in GV oocytes (596 genes). In particular, we found that transcripts of genes involved in chromosome segregation and RNA splicing significantly increased representation with age, while genes related to mitochondrial activity showed a lower representation. Gene regulatory network analysis facilitated the identification of potential upstream master regulators of the genes involved in those biological functions. Our analysis suggests that advanced maternal age does not globally affect the oocyte transcriptome at GV or IVM‐MII stages. Nonetheless, hundreds of genes displayed altered transcript representation, particularly in IVM‐MII oocytes, which might contribute to the age‐related quality decline in human oocytes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here