Open Access
Genetic Analysis of the Drosophila 63F Early Puff: Characterization of Mutations in E63-1 and maggie, a Putative Tom22
Author(s) -
Martina Vašková,
A. M. Bentley,
Samantha J. Marshall,
Pamela Windsor Reid,
Carl S. Thummel,
Andrew J. Andres
Publication year - 2000
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/156.1.229
Subject(s) - biology , complementation , gene , microbiology and biotechnology , salivary gland , genetics , phenotype , biochemistry
The 63F early puff in the larval salivary gland polytene chromosomes contains the divergently transcribed E63-1 and E63-2 ecdysone-inducible genes. E63-1 encodes a member of the EF-hand family of Ca(2+)-binding proteins, while E63-2 has no apparent open reading frame. To understand the functions of the E63 genes, we have determined the temporal and spatial patterns of E63-1 protein expression, as well as undertaken a genetic analysis of the 63F puff. We show that E63-1 is expressed in many embryonic and larval tissues, but the third-instar larval salivary gland is the only tissue where increases in protein levels correlate with increases in ecdysone titer. Furthermore, the subcellular distribution of E63-1 protein changes dynamically in the salivary glands at the onset of metamorphosis. E63-1 and E63-2 null mutations, however, have no effect on development or fertility. We have characterized 40 kb of the 63F region, defined as the interval between Ubi-p and E63-2, and have identified three lethal complementation groups that correspond to the dSc-2, ida, and mge genes. We show that mge mutations lead to first-instar larval lethality and that Mge protein is similar to the Tom22 mitochondrial import proteins of fungi, suggesting that it has a role in mitochondrial function.