z-logo
open-access-imgOpen Access
Atomic force microscopic demonstration of DNA looping by GalR and HU
Author(s) -
Yuri L. Lyubchenko,
Luda S. Shlyakhtenko,
Tsunehiro Aki,
S. Adhya
Publication year - 1997
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/25.4.873
Subject(s) - dna supercoil , biology , lac repressor , dna , repressor , protein–dna interaction , transcription (linguistics) , biophysics , histone , operon , microbiology and biotechnology , circular bacterial chromosome , dna binding protein , genetics , escherichia coli , gene , transcription factor , base pair , dna replication , linguistics , philosophy
Regulation of gene transcription in both prokaryotes and eukaryotes involves formation of various DNA-multiprotein complexes of higher order structure through communication between distant regions of DNA. The communication between distant DNA sites occurs by interaction between proteins bound to the sites by looping out the intervening DNA segments. The repression of transcription of two overlapping promoters of the gal operon in Escherichia coli requires Gal repressor (GalR) and the histone-like protein HU. Both in vivo and in vitro data support a proposed HU containing complex responsive to induction in which GalR molecules bound to two distant operator sites interact by looping out DNA. We successfully applied atomic force microscope (AFM) imaging to visualize galDNA complexes with proteins. We report GalR mediated DNA looping in which HU plays an obligatory role by helping GalR tetramerization. Supercoiling of DNA, which is also critical for GalR action, may stabilize the DNA loops by providing an energetically favorable geometry of the DNA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom