z-logo
open-access-imgOpen Access
Dietary Raw Versus Retrograded Resistant Starch Enhances Apparent but not True Magnesium Absorption in Rats
Author(s) -
MarieLouise A. Heijnen,
Gerrit J. van den Berg,
A.C. Beynen
Publication year - 1996
Publication title -
journal of nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.463
H-Index - 265
eISSN - 1541-6100
pISSN - 0022-3166
DOI - 10.1093/jn/126.9.2253
Subject(s) - magnesium , chemistry , excretion , lactulose , absorption (acoustics) , endogeny , endocrinology , mineral absorption , starch , medicine , resistant starch , biochemistry , calcium , biology , physics , organic chemistry , acoustics
Dietary raw (RS2) vs. retrograded resistant starch (RS3) raises apparent magnesium absorption in rats. The mechanism proposed is that RS2 enhances magnesium avaibility for absorption; it does this by increasing ileal solubility of magnesium due to a reduction in pH as a consequence of RS2 fermentation in the gut. The mechanism implies that dietary RS2 vs. RS3 would raise true magnesium absorption and stimulate reabsorption of endogenous magnesium, leading to a lower fecal excretion of endogenous magnesium. Dietary lactulose vs. glucose raises apparent magnesium absorption, and the mechanism proposed is similar to that for the stimulatory effect of RS2 vs. RS3. Thus, we measured in rats fed RS3, RS2, glucose or lactulose true magnesium absorption on the basis of the retention of the orally and intraperitoneally administered radiotracer 28Mg. Feeding rats RS2 instead of RS3 significantly enhanced apparent but not true magnesium absorption, because RS2 lowered fecal excretion of endogenous magnesium. When compared with dietary glucose, lactulose significantly raised both apparent and true magnesium absorption, but did not affect fecal excretion of endogenous magnesium. It is suggested that the proposed mechanism by which RS2 and lactulose would enhance magnesium absorption is disproved by the present data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom