Topology independent structural matching discovers novel templates for protein interfaces
Author(s) -
Claudio Mirabello,
Björn Wallner
Publication year - 2018
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/bty587
Subject(s) - template , interface (matter) , sequence (biology) , topology (electrical circuits) , computer science , function (biology) , matching (statistics) , surface (topology) , code (set theory) , protein structure , biological system , set (abstract data type) , chemistry , geometry , parallel computing , mathematics , biology , programming language , combinatorics , biochemistry , statistics , bubble , maximum bubble pressure method , evolutionary biology
Protein-protein interactions (PPI) are essential for the function of the cellular machinery. The rapid growth of protein-protein complexes with known 3D structures offers a unique opportunity to study PPI to gain crucial insights into protein function and the causes of many diseases. In particular, it would be extremely useful to compare interaction surfaces of monomers, as this would enable the pinpointing of potential interaction surfaces based solely on the monomer structure, without the need to predict the complete complex structure. While there are many structural alignment algorithms for individual proteins, very few have been developed for protein interfaces, and none that can align only the interface residues to other interfaces or surfaces of interacting monomer subunits in a topology independent (non-sequential) manner.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom