Open Access
Human activities modulate greening patterns: a case study for southern Xinjiang in China based on long time series analysis
Author(s) -
Ran Zhao,
Xingcai Liu,
Jinwei Dong,
Gang Zhao,
Kiril Manevski,
Mathias Neumann Andersen,
Qiuhong Tang
Publication year - 2022
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/ac58a9
Subject(s) - greening , arid , vegetation (pathology) , physical geography , geography , land cover , climate change , driving factors , land use , trend analysis , china , precipitation , aridity index , environmental science , ecology , climatology , meteorology , biology , medicine , archaeology , pathology , machine learning , computer science , geology
Greening of the Earth is observed during the past several decades and both climatic and non-climatic factors drive this process. However, the greening spatio-temporal patterns and the role of human activities such as agricultural intensification in hyper-arid regions remain unclear. This study aimed to (a) reveal the greening pattern in China’s southern Xinjiang using satellite estimations of normalized difference vegetation index and leaf area index data during 1982–2019, and (b) examine the impacts of human activities in terms of land use land cover (LULC) data. Our multi-decadal analysis is ideal to reveal long-term trends and support a better understanding of the anthropogenic effects in this hyper-arid and endorheic region. The results showed that vegetation as a whole increased significantly in southern Xinjiang and the greening rate of cropland was much higher than the other LULC types. Significant greening was found over >90% of cropland, while insignificant changes and browning trends were found over nearly half the area of the other LULCs. The proportion of greening areas was more than 80% within 1 km from human-dominated areas while the proportion decreased to 40% with distances >15 km. The spatial heterogeneity of the greening indicated that, despite widely reported beneficial effects of warmer and wetter climate for a general greening trend, human activities could be the dominant factor modulating the greening rates disproportionately over different LULCs in arid and hyper-arid areas.