z-logo
open-access-imgOpen Access
Alternative DNA loops regulate the arabinose operon in Escherichia coli.
Author(s) -
Li Huo,
Katherine J. Martin,
Robert Schleif
Publication year - 1988
Publication title -
proceedings of the national academy of sciences
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.85.15.5444
Subject(s) - operon , l arabinose operon , arabinose , inducer , promoter , footprinting , psychological repression , dna , biology , escherichia coli , lac operon , dna footprinting , repressor , biochemistry , genetics , gene , gal operon , gene expression , base sequence , xylose , fermentation
The araCBAD regulatory region of Escherichia coli contains two divergently oriented promoters and three sites to which AraC, the regulatory protein of the operon, can bind. This paper presents the results of in vivo dimethyl sulfate "footprinting" experiments to monitor occupancy of the three AraC sites and measurements of activity of the two promoters. These measurements were made both in the absence of the inducer arabinose and at various times after arabinose addition to growing cells containing the wild-type ara regulatory region or the regulatory region containing various deletions and point mutations. The data lead to the conclusion that two different DNA loops can form in the ara regulatory region. These loops are generated by AraC protein molecules binding to two different DNA sites and binding to each other. One of these loops predominates in the absence of arabinose and plays a major role in repressing activity of one of the promoters. Upon the addition of arabinose the amount of the first loop type, the repression loop, decreases and the amount of a second loop increases. Formation of this second loop precludes the counterproductive formation of the repression loop.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom