A generalized Poisson equation and short-range self-interaction energies
Author(s) -
Sergey A. Varganov,
Andrew T. B. Gilbert,
Peter M. W. Gill
Publication year - 2008
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.2945298
Subject(s) - poisson's equation , range (aeronautics) , discrete poisson equation , poisson distribution , attenuation , exponential function , physics , statistical physics , energy (signal processing) , mathematics , mathematical analysis , laplace's equation , classical mechanics , quantum mechanics , partial differential equation , statistics , materials science , composite material
We generalize the Poisson equation to attenuated Newtonian potentials. If the attenuation is at least exponential, the equation provides a local mapping between the density and its potential. We use this to derive several density functionals for the short-range self-interaction energy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom