Premium
Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus
Author(s) -
Ward Doyle,
Newton Austin
Publication year - 1997
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1046/j.1365-2958.1997.6242005.x
Subject(s) - caulobacter crescentus , biology , nucleoid , cell division , mutant , genetics , gene , mutation , dna gyrase , chromosome segregation , cell cycle , topoisomerase iv , escherichia coli , microbiology and biotechnology , cell , chromosome
We have identified the parC and parE genes encoding DNA topoisomerase IV (Topo IV) in Caulobacter crescentus . We have also characterized the effect of conditional Topo IV mutations on cell division and morphology. Topo IV mutants of C. crescentus are unlike mutants of Escherichia coli and S. typhimurium , which form long filamentous cells that are defective in nucleoid segregation and divide frequently to produce anucleate cells. Topo IV mutants of C. crescentus are highly pinched at multiple sites (cell separation phenotype) and they do not divide to produce cells lacking DNA. These results suggest unique regulatory mechanisms coupling nucleoid partitioning and cell division in this aquatic bacterium. In addition, distinctive nucleoid‐partitioning defects are not apparent in C. crescentus Topo IV mutants as they are in E. coli and S. typhimurium . However, abnormal nucleoid segregation in parE mutant cells could be demonstrated in a genetic background containing a conditional mutation in the C. crescentus ftsA gene, an early cell division gene that is epistatic to parE for cell division and growth. We discuss these results in connection with the possible roles of C. crescentus Topo IV in the regulation of cell division, chromosome partitioning, and late events in polar morphogenesis. Although the ParC and ParE subunits of Topo IV are very similar in sequence to the GyrA and GyrB subunits of DNA gyrase, we have used DNA sequence analysis to identify a highly conserved ‘GyrA box’ sequence that is unique to the GyrA proteins and may serve as a hallmark of the GyrA protein family.