Premium
The accumulation of trehalose in nodules of several cultivars of common bean ( Phaseolus vulgaris ) and its correlation with resistance to drought stress
Author(s) -
FaríasRodríguez Rodolfo,
Mellor Robert B.,
Arias Carlos,
PeñaCabriales Juan José
Publication year - 1998
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1034/j.1399-3054.1998.1020303.x
Subject(s) - trehalose , phaseolus , cultivar , biology , axenic , horticulture , inoculation , trehalase , botany , nodule (geology) , bacteria , biochemistry , genetics , paleontology
Nine cultivars of common bean were grown in the presence of a natural microflora without exogenous rhizobial inoculation. Nodules were harvested 30 days post planting (early flowering stage) and the presence of trehalose determined. Amounts present varied according to cultivar and were between 0.20 and 1.63 mg g −1 nodule dry weight. Rhizobial strains were isolated from the nodules of three selected cultivars (Canario 101, Flor de Mayo Bajio and Flor de Mayo 38). Trehalose levels in nodules produced after either mixed strain reinfection, or after axenic homologous reinfection or after axenic cross‐reinfection could be manipulated by applying drought stress. Mixed reinfection nodules from stressed plants accumulated between two and six times the trehalose concentration found in non‐stressed control plants. After axenic cross‐reinfection up to 48‐fold increases in nodule trehalose content were recorded during drought stress. Those cultivars exhibiting high nodule trehalose levels and/or a high degree of trehalose stimulation in response to drought stress also exhibited a high leaf relative water content and were also the most drought resistant. During drought stress nodule trehalase levels rose only slightly.