Premium
Ultrastructural and immunohistochemical analysis of proteoglycans in mouse pubic symphysis
Author(s) -
Pinheiro Mônica C.,
Joazeiro Paulo P.,
Mora Oswaldo A.,
Toledo Olga M.S.
Publication year - 2003
Publication title -
cell biology international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.932
H-Index - 77
eISSN - 1095-8355
pISSN - 1065-6995
DOI - 10.1016/s1065-6995(03)00121-5
Subject(s) - fibrocartilage , decorin , chondroitin sulfate , keratan sulfate , glycosaminoglycan , chemistry , cartilage , fibril , chondroitin , ultrastructure , aggrecan , proteoglycan , intermediate filament , hyaline cartilage , microbiology and biotechnology , extracellular matrix , anatomy , biochemistry , biology , pathology , cytoskeleton , cell , osteoarthritis , articular cartilage , medicine , alternative medicine
Abstract Proteoglycans were accurately localized in mouse pubic symphyseal tissues using the cuprolinic blue method. Specific glycosaminoglycans degradative enzymes, together with chondroitin sulfate and decorin antibodies, allowed the identification of glycosaminoglycans. Chondroitin sulfate proteoglycans were the main proteoglycans observed in hyaline cartilage, fibrocartilage, and dense connective tissue. Ultrastructurally, they were seen as electron‐dense granules and filaments. The granules, rich in chondroitin sulfate chains, were exclusively found in hyaline cartilage, whereas filaments were present in cartilage, fibrocartilage, and dense connective tissue. The latter were classified by size and susceptibility to enzyme digestion into F1, F2 and F3 filaments: F1 filaments were small, thin, and collagen fibril‐associated; F2 filaments were thick, heavily stained, and localized around individual collagen fibrils and between bundles of collagen fibrils; and F3 filaments were scattered throughout elastic fiber surfaces. Considering their localization, susceptibility to chondroitinase AC and immunohistochemical detection, the symphysial F1 filaments were found to be preferentially decorin substituted with chondroitin sulfate side chains. The F2 filaments were also susceptible to chondroitinase AC treatment, whereas F3 filaments could be digested by heparitinase. The data thus obtained on the localization and identification of pubic symphyseal proteoglycans in virgin mice may be useful in the study of structural modifications that occur throughout pregnancy.