Premium
Mesenchymal Stem Cell Capping on ECM‐Anchored Caspase Inhibitor–Loaded PLGA Microspheres for Intraperitoneal Injection in DSS‐Induced Murine Colitis
Author(s) -
Pathak Shiva,
Regmi Shobha,
Shrestha Prakash,
Choi Inho,
Doh KyoungOh,
Jeong JeeHeon
Publication year - 2019
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201901269
Subject(s) - mesenchymal stem cell , plga , transplantation , viability assay , extracellular matrix , chemistry , surface modification , microbiology and biotechnology , materials science , biomedical engineering , cell , in vitro , medicine , biochemistry , biology , surgery
Abstract Mesenchymal stem cells (MSCs) are considered as a promising alternative for the treatment of various inflammatory disorders. However, poor viability and engraftment of MSCs after transplantation are major hurdles in mesenchymal stem cell therapy. Extracellular matrix (ECM)‐coated scaffolds provide better cell attachment and mechanical support for MSCs after transplantation. A single‐step method for ECM functionalization on poly(lactic‐ co ‐glycolic acid) (PLGA) microspheres using a novel compound, dopamine‐conjugated poly(ethylene‐ alt ‐maleic acid), as a stabilizer during the preparation of microspheres is reported. The dopamine molecules on the surface of microspheres provide active sites for the conjugation of ECM in an aqueous solution. The results reveal that the viability of MSCs improves when they are coated over the ECM‐functionalized PLGA microspheres (eMs). In addition, the incorporation of a broad‐spectrum caspase inhibitor (IDN6556) into the eMs synergistically increases the viability of MSCs under in vitro conditions. Intraperitoneal injection of the MSC–microsphere hybrid alleviates experimental colitis in a murine model via inhibiting Th1 and Th17 differentiation of CD4 + T cells in colon‐draining mesenteric lymph nodes. Therefore, drug‐loaded ECM‐coated surfaces may be considered as attractive tools for improving viability, proliferation, and functionality of MSCs following transplantation.