Premium
A self‐consistent scattering model for cirrus. I: The solar region
Author(s) -
Baran Anthony. J.,
Labonnote L.C.
Publication year - 2007
Publication title -
quarterly journal of the royal meteorological society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.744
H-Index - 143
eISSN - 1477-870X
pISSN - 0035-9009
DOI - 10.1002/qj.164
Subject(s) - ice crystals , cirrus , scattering , radiative transfer , extinction (optical mineralogy) , crystal (programming language) , physics , materials science , atmospheric sciences , computational physics , optics , computer science , programming language
Abstract In this paper a self‐consistent scattering model for cirrus is presented. The model consists of an ensemble of ice crystals where the smallest ice crystal is represented by a single hexagonal ice column. As the overall ice crystal size increases, the ice crystals become progressively more complex by arbitrarily attaching other hexagonal elements until a chain‐like ice crystal is formed, this representing the largest ice crystal in the ensemble. The ensemble consists of six ice crystal members whose aspect ratios (ratios of the major‐to‐minor axes of the circumscribed ellipse) are allowed to vary between unity and 1.84 for the smallest and largest ice crystal, respectively. The ensemble model's prediction of parameters fundamental to solar radiative transfer through cirrus such as ice water content and the volume extinction coefficient is tested using in situ based data obtained from the midlatitudes and Tropics. It is found that the ensemble model is able to generally predict the ice water content and extinction measurements within a factor of two. Moreover, the ensemble model's prediction of cirrus spherical albedo and polarized reflection are tested against a space‐based instrument using one day of global measurements. The space‐based instrument is able to sample the scattering phase function between the scattering angles of approximately 60° and 180° , and a total of 37 581 satellite pixels were used in the present analysis covering latitude bands between 43.75°S and 76.58°N. It is found that the ensemble model phase function is well able to minimize significantly differences between satellite‐based measurements of spherical albedo and the ensemble model's prediction of spherical albedo. The satellite‐based measurements of polarized reflection are found to be reasonably described by more simple members of the ensemble. The ensemble model presented in this paper should find wide applicability to the remote sensing of cirrus as well as more fundamental solar radiative transfer calculations through cirrus, and improved solar optical properties for climate and Numerical Weather Prediction models. Copyright © 2007 Royal Meteorological Society