Premium
Weak Musielak–Orlicz Hardy spaces and applications
Author(s) -
Liang Yiyu,
Yang Dachun,
Jiang Renjin
Publication year - 2016
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201500152
Subject(s) - mathematics , hardy space , maximal function , function (biology) , pure mathematics , space (punctuation) , function space , mathematical analysis , weight function , computer science , evolutionary biology , biology , operating system
Let φ :R n × [ 0 , ∞ ) → [ 0 , ∞ )satisfy that φ ( x , · ) , for any given x ∈ R n , is an Orlicz function and φ ( · , t ) is a MuckenhouptA ∞ ( R n )weight uniformly in t ∈ ( 0 , ∞ ) . In this article, the authors introduce the weak Musielak–Orlicz Hardy space W H φ ( R n )via the grand maximal function and then obtain its vertical or its non–tangential maximal function characterizations. The authors also establish other real‐variable characterizations of W H φ ( R n ) , respectively, in terms of the atom, the molecule, the Lusin area function, the Littlewood–Paley g ‐function or g λ * ‐function. All these characterizations for weighted weak Hardy spaces W H w p ( R n )(namely, φ ( x , t ) : = w ( x ) t pforallt ∈ [ 0 , ∞ )and x ∈ R nwith p ∈ ( 0 , 1 ] and w ∈ A ∞ ( R n ) ) are new and part of these characterizations even for weak Hardy spaces W H p ( R n )(namely, φ ( x , t ) : = t pforallt ∈ [ 0 , ∞ )and x ∈ R nwith p ∈ ( 0 , 1 ] ) are also new. As an application, the boundedness of Calderón–Zygmund operators fromH φ ( R n )to W H φ ( R n )in the critical case is presented.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom