z-logo
Premium
Submicron‐surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment
Author(s) -
Duan Rongquan,
Barbieri Davide,
Luo Xiaoman,
Weng Jie,
de Bruijn Joost D.,
Yuan Huipin
Publication year - 2016
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.23201
Subject(s) - resorption , regeneration (biology) , bone resorption , bone formation , calcium , materials science , chemistry , anatomy , biomedical engineering , medicine , pathology , biology , microbiology and biotechnology , metallurgy
ABSTRACT Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here