Premium
Development of asymmetric resorbable membranes for guided bone and surrounding tissue regeneration
Author(s) -
Fidalgo C.,
Rodrigues M. A.,
Peixoto T.,
Lobato J. V.,
Santos J. D.,
Lopes M. A.
Publication year - 2018
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.36420
Subject(s) - membrane , materials science , adhesion , tissue engineering , chitosan , fourier transform infrared spectroscopy , biomedical engineering , chemical engineering , regeneration (biology) , cell adhesion , biophysics , chemistry , composite material , biochemistry , microbiology and biotechnology , biology , medicine , engineering
Abstract Membranes design for guided tissue engineering have been studied to aid in cell viability and function as tissue barriers. Two asymmetric resorbable membranes for guided bone regeneration (GBR) were produced: chitosan/pectin/poly‐caprolactone (PECm) and poly(vinyl alcohol)/polyethylenimine/poly(ethylene glycol) (PVAm). Both membranes were characterized by physical, chemical, mechanical, degradation rate, and in vitro biological assessment. Scanning electron microscopy (SEM) confirmed the membranes asymmetry, in which PECm asymmetry is given by roughness and chemical composition, while PVAm's only by differences in porosity. Fourier transform infrared spectroscopy (FTIR) identified chemical groups and bonds between polymers. Both sides of PVAm revealed to be hydrophobic, whereas the PECm presented one side with higher hydrophobicity than the other. In vitro biological assessment disclosed that PECm presented a higher cell adhesion growth pattern than PVAm, where it seemed to occur a delay in proliferation due to initial low cell adhesion. Both developed membranes are suitable for GBR, since both membranes fulfil the requirements to be used as a tissue barrier. The PECm has an additional role in cell viability that was not observed in the PVAm. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2141‐2150, 2018.