Premium
Precocious invasion of the optic stalk by transient retinopetal axons
Author(s) -
Reese B. E.,
Geller S. F.
Publication year - 1995
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903530408
Subject(s) - diencephalon , optic nerve , biology , anatomy , retina , optic chiasm , neuroscience , central nervous system
Abstract This study demonstrates that the fetal optic nerve contains a conspicuous population of transient retinopetal axons. Implants of the carbocyanine dye, DiI, were made into the retina or diencephalon of fetal ferrets to label the retinopetal axons retrogradely or anterogradely, respectively, and sections were immunostained for β‐tubulin to label the early differentiating axons in the optic nerve. Dye implants into the optic nerve head, but not the retinal periphery, retrogradely labeled somata in the ventrolateral diencephalon, provided the implants were made before embryonic day (E) 30. When dye implants were made into the ventrolateral diencephalon, these same retinopetal axons were anterogradely labeled, coursing through the optic nerve but never invading the retina. The axons course as 2–5 fascicles from their cells of origin and turn laterally to enter the optic nerve where it joins the future hypothalamus. The retinopetal cells can be retrogradely labeled as early as E20, before optic axons have left the retina. The optic nerve and fiber layer are immunoreactive for β‐tubulin on E24 and thereafter, whereas on E20 and E22, they are immunonegative. Yet at these early embryonic ages, immunopositive fascicles of axons course from the diencephalon into the optic stalk, confirming the precocious nature of the retinopetal projection. Implants of dye made into the future optic nerve head at these very early stages also retrogradely label retinopetal cells in the future chiasmatic region. These cells are distributed primarily on the side ipsilateral to the midline, but a few can be found contralateral to it. Both these, as well as the retinopetal axons arising from the ventrolateral diencephalon, may serve a transient guidance function for later developing optic axons. © 1995 Wiley‐Liss, Inc.