z-logo
Premium
Evaluation of competing risks prediction models using polytomous discrimination index
Author(s) -
Ding Maomao,
Ning Jing,
Li Ruosha
Publication year - 2021
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11583
Subject(s) - estimator , resampling , covariate , mathematics , statistics , artificial intelligence , computer science , econometrics , machine learning
For competing risks data, it is often important to predict a patient's outcome status at a clinically meaningful time point after incorporating the informative censoring due to competing risks. This can be done by adopting a regression model that relates the cumulative incidence probabilities to a set of covariates. To assess the performance of the resulting prediction tool, we propose an estimator of the polytomous discrimination index applicable to competing risks data, which can quantify a prognostic model's ability to discriminate among subjects from different outcome groups. The proposed estimator allows the prediction model to be subject to model misspecification and enjoys desirable asymptotic properties. We also develop an efficient computation algorithm that features a computational complexity of O ( n log n ) . A perturbation resampling scheme is developed to achieve consistent variance estimation. Numerical results suggest that the estimator performs well under realistic sample sizes. We apply the proposed methods to a study of monoclonal gammopathy of undetermined significance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom