z-logo
Premium
Continuous threshold models with two‐way interactions in survival analysis
Author(s) -
Shuo Liu Shuo,
Chen Bingshu E.
Publication year - 2020
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11561
Subject(s) - statistics , mathematics , covariance , consistency (knowledge bases) , threshold model , proportional hazards model , asymptotic distribution , computer science , econometrics , artificial intelligence , estimator
Abstract Proportional hazards model with the biomarker–treatment interaction plays an important role in the survival analysis of the subset treatment effect. A threshold parameter for a continuous biomarker variable defines the subset of patients who can benefit or lose from a certain new treatment. In this article, we focus on a continuous threshold effect using the rectified linear unit and propose a gradient descent method to obtain the maximum likelihood estimation of the regression coefficients and the threshold parameter simultaneously. Under certain regularity conditions, we prove the consistency, asymptotic normality and provide a robust estimate of the covariance matrix when the model is misspecified. To illustrate the finite sample properties of the proposed methods, we simulate data to evaluate the empirical biases, the standard errors and the coverage probabilities for both the correctly specified models and misspecified models. The proposed continuous threshold model is applied to a prostate cancer data with serum prostatic acid phosphatase as a biomarker.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here