z-logo
Premium
Preparation and surface modification of electrospun aligned poly(butylene carbonate) nanofibers
Author(s) -
Shao Meiling,
Chen Lu,
Yang Qing
Publication year - 2013
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39103
Subject(s) - materials science , crystallinity , contact angle , electrospinning , nanofiber , crystallization , scanning electron microscope , composite material , x ray photoelectron spectroscopy , chemical engineering , ultimate tensile strength , surface modification , gelatin , grafting , propylene carbonate , polymer chemistry , polymer , electrolyte , electrode , chemistry , organic chemistry , engineering
Abstract In this study, aligned poly(butylene carbonate) nanofibers were fabricated by electrospinning with a high‐speed transfer roller as the receiving device. Cold plasma treatment technology was applied to improve its hydrophilicity and activity to expand its application in biological materials. The morphology of the fibers was investigated with scanning electron microscopy. X‐ray diffraction was used to research the impact of the rotation speed on the crystallization and orientation degree of the crystals. The tensile properties of the materials were evaluated by a universal tester. The surface properties of the fibers pretreated by Helium (He) and those grafted with gelatin were evaluated with water contact angle measurement and X‐ray photoelectron spectroscopy. The experimental results indicate that the order degree of fibers, crystallinity, and orientation of the crystalline region, including the mechanical properties, all increased correspondingly with the rotation speed. After plasma pretreatment, the hydrophilicity was improved significantly, and the grafting reaction was realized successfully. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here