Premium
Cu(II)‐promoted cyclization of hydrazonophthalazine to triazolophthalazine; Synthesis and structure diversity of six novel Cu(II)‐triazolophthalazine complexes
Author(s) -
Soliman Saied M.,
Albering Jörg H.,
ElFaham Ayman
Publication year - 2019
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.4992
Subject(s) - chemistry , crystallography , ligand (biochemistry) , stacking , metal , octahedron , copper , supramolecular chemistry , stereochemistry , octahedral molecular geometry , crystal structure , biochemistry , receptor , organic chemistry
A novel route for the synthesis of Cu(II)‐triazolophthalazine complexes using the Cu(II)‐promoted cyclization dehydrogenation reactions of hydrazonophthalazines under reflux was presented. Two hydrazonophthalazines were cyclized to the corresponding triazolophthalazine ligands, 3‐pyridin‐2‐yl‐3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazine ( TPP ) and 3‐(3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazin‐3‐yl)‐benzoic acid ( TP3COOH ), followed by in situ complexation with Cu(II) yielding six novel Cu(II)‐triazolophthalazine complexes depending on the reaction conditions. The molecular and supramolecular structures of the Cu(II)‐triazolophthalazine complexes were discussed. The metal sites have rectangular pyramidal geometry in the [Cu(TPP)Cl 2 ] 2 ; 1 and [Cu(TP3COOEt)Cl 2 (H 2 O)] 2 ; 4 dinuclear complexes, distorted square planar in [Cu(TP3COOMe) 2 Cl 2 ]; 3 , [Cu(TP3COOH) 2 Cl 2 ]; 5 and [Cu(TP3COOH) 2 Cl 2 ]·H 2 O; 6 and a distorted octahedral in [Cu(TPP)(H 2 O) 2 (NO 3 ) 2 ]; 2 . Hirshfeld analysis showed that the O…H, C…H, Cl…H (except TP3COOH and 2 ), N…H and π‐π stacking interactions are the most important intermolecular contacts. The π‐π stacking interactions are the maximum for TP3COOH and complex 6 with net C…C/C…N contacts of 19.4% and 15.4%, respectively. The orbital–orbital interaction energies of the Cu‐N/Cu‐Cl bonds correlated inversely with the corresponding Cu‐N/Cu‐Cl distances, respectively. The charge transfer processes between Cu(II) and ligand groups were also discussed. The charge densities of the Cu(II) centers are reduced to 0.663–0.995 e due to the interactions with the ligand groups coordinating it.