Premium
High Ethylene Selectivity in Methanol‐to‐Olefin (MTO) Reaction over MOR‐Zeolite Nanosheets
Author(s) -
Lu Kun,
Huang Ju,
Ren Li,
Li Chao,
Guan Yejun,
Hu Bingwen,
Xu Hao,
Jiang Jingang,
Ma Yanhang,
Wu Peng
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202000269
Abstract Precisely controlled crystal growth endows zeolites with special textural and catalytic properties. A nanosheet mordenite zeolite with a thickness of ca. 11 nm, named as MOR‐NS, has been prepared using a well‐designed gemini‐type amphiphilic surfactant as bifunctional structure‐directing agent (SDA). Its benzyl diquarternary ammonium cations structurally directed the formation of MOR topology, whereas the long and hydrophobic hexadecyl tailing group prevented the extensive crystal growth along b axis. This kind of orientated crystallization took place through the inorganic–organic interaction between silica species and SDA molecules present in the whole process. The thin MOR nanosheets, with highly exposed (010) planes and 8‐membered ring (MR) windows, exhibited a much improved ethylene selectivity (42.1 %) for methanol‐to‐olefin (MTO) reactions when compared with conventional bulk MOR crystals (3.3 %).