z-logo
Premium
Surface Defect Engineering in 2D Nanomaterials for Photocatalysis
Author(s) -
Xiong Jun,
Di Jun,
Xia Jiexiang,
Zhu Wenshuai,
Li Huaming
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201801983
Subject(s) - photocatalysis , materials science , nanomaterials , vacancy defect , nanotechnology , surface engineering , photoelectric effect , water splitting , catalysis , optoelectronics , chemistry , biochemistry , crystallography
Abstract 2D Nanomaterials, with unique structural and electronic features, have shown enormous potential toward photocatalysis fields. However, the photocatalytic behavior of pristine 2D photocatalysts are still unsatisfactory, and far below the requirements of practical applications. In this regard, surface defect engineering can serve as an effective means to tune photoelectric parameters of 2D photocatalysts through tailoring the local surface microstructure, electronic structure, and carrier concentration. In this review, recent progress in the design of surface defects with the classified anion vacancy, cation vacancy, vacancy associates, pits, distortions, and disorder on 2D photocatalysts to boost the photocatalytic performance is summarized. The strategies for controlling defects formation and technique to distinguish various surface defects are presented. The crucial roles of surface defects for photocatalysis performance optimization are proposed and advancement of defective 2D photocatalysts toward versatile applications such as water oxidation, hydrogen production, CO 2 reduction, nitrogen fixation, organic synthesis, and pollutants removal are discussed. Surface defect modulated 2D photocatalysts thus represent a powerful configuration for further development toward photocatalysis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here