Premium
Synthesis and Modification of Functional Polycarbonates with Pendant Allyl Groups
Author(s) -
Łukaszczyk Jan,
Jaszcz Katarzyna,
Kuran Witold,
Listoś Tomasz
Publication year - 2001
Publication title -
macromolecular bioscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.924
H-Index - 105
eISSN - 1616-5195
pISSN - 1616-5187
DOI - 10.1002/1616-5195(20011001)1:7<282::aid-mabi282>3.0.co;2-w
Subject(s) - chemistry , ether , polymer chemistry , copolymer , hydrolysis , isopropyl , organic chemistry , pyrogallol , polymer
Abstract Functional aliphatic polycarbonates with pendant allyl groups were synthesised by copolymerization of carbon dioxide and allyl glycidyl ether (AGE) in the presence of a catalyst system based on ZnEt 2 and pyrogallol at a molar ratio 2 : 1. The functionality of some polycarbonates was reduced by replacing a part of allyl ether with saturated glycidyl ether, i.e., butyl glycidyl ether (BGE) or isopropyl glycidyl ether (IGE). Polycarbonates obtained by the copolymerization of AGE and CO 2 or by the terpolymerization of AGE, IGE and CO 2 were oxidized with m ‐chloroperbenzoic acid to their respective poly(epoxycarbonate)s. The influence of the AGE/ΣGE ratio in the polycarbonates, the polymer concentration in the reaction solution and the duration of the reaction on the conversion of allyl groups into glycidyl ones was examined. A tendency to gelation of the initial and oxidized polycarbonates during storage was observed. The initial polycarbonates and their oxidized forms were degraded in aqueous buffer of pH = 7.4 at 37°C. The course of hydrolytic degradation was monitored by the determination of mass loss.