z-logo
Premium
Dynamic behavior of a continuous autothermal isobutylene polymerization reactor
Author(s) -
Nele Márcio,
Pinto José Carlos
Publication year - 1997
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(19970815)65:7<1403::aid-app19>3.0.co;2-v
Subject(s) - cationic polymerization , isobutylene , polymerization , impurity , polymer , chemical engineering , materials science , chemistry , polymer chemistry , organic chemistry , engineering , copolymer
Abstract Industrial autothermal cationic isobutylene polymerization reactors may present very complex dynamic behavior and difficult operation. A mathemathical model was developed to describe the operation of an autothermal solution industrial reactor, and some possible sources of complex dynamical behavior were analyzed. The results obtained indicate that the most probable source of the complex behavior observed industrially is the existence of adventitious impurities in the feeed stream. The effects caused by the presence of adventitious impurities on process operation and product properties were investigated for both polymerization and oligomerization. In the first case, impurities influence the reactor productivity but do not change the polymer quality. In the oligomerization, both the polymer quality and the reactor productivity are seriously affected by the existence of impurities in the feed stream. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1403–1413, 1997

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here