Open Access
Adsorption of Fibrinogen to Droplets of Liquid Hydrophobic Phases
Author(s) -
Gregory S. Retzinger,
Ashley P. DeAnglis,
Samantha J. Patuto
Publication year - 1998
Publication title -
arteriosclerosis, thrombosis, and vascular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.007
H-Index - 270
eISSN - 1524-4636
pISSN - 1079-5642
DOI - 10.1161/01.atv.18.12.1948
Subject(s) - fibrinogen , fibrin , chemistry , adhesion , adsorption , thrombin , chemical engineering , biophysics , oil droplet , organic chemistry , biochemistry , platelet , emulsion , engineering , immunology , biology
Abstract —Fibrinogen adsorbs spontaneously from aqueous media containing that protein to droplets of liquid hydrophobic phases dispersed in those same media. Examples of such phases include mineral oils, straight-chain hydrocarbons, and various plant- and animal-derived oils. Lecithin preexisting on the surface of oil droplets reduces significantly the amount of fibrinogen that can otherwise bind to them. When bound, fibrinogen remains active in the classic sense of fibrin gelation. As a consequence, oil droplets coated with fibrinogen can participate in a host of biologically important adhesive processes in which the protein would be expected to participate. Certain polyanions, eg, heparin, pentosan polysulfate, dextran sulfate, and suramin, bind to adsorbed fibrin(ogen) and prevent thrombin-dependent adhesion of fibrinogen-coated surfaces. Thus, these polyanions can be used to prevent adhesion between fibrin(ogen)-coated oil droplets and other fibrin(ogen)-coated surfaces. Potential practical applications and biological implications of these phenomena are presented and discussed.