Fuel-Optimal Ascent Trajectory Problem for Launch Vehicle via Theory of Functional Connections
Author(s) -
Shiyao Li,
Yushen Yan,
Kun Zhang,
Xinguo Li
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/2734230
Subject(s) - nonlinear system , mathematical optimization , interpolation (computer graphics) , matlab , trajectory , expression (computer science) , optimal control , mathematics , function (biology) , nonlinear programming , process (computing) , computer science , trajectory optimization , control theory (sociology) , control (management) , animation , physics , computer graphics (images) , quantum mechanics , astronomy , evolutionary biology , artificial intelligence , biology , programming language , operating system
In this study, we develop a method based on the Theory of Functional Connections (TFC) to solve the fuel-optimal problem in the ascending phase of the launch vehicle. The problem is first transformed into a nonlinear two-point boundary value problem (TPBVP) using the indirect method. Then, using the function interpolation technique called the TFC, the problem’s constraints are analytically embedded into a functional, and the TPBVP is transformed into an unconstrained optimization problem that includes orthogonal polynomials with unknown coefficients. This process effectively reduces the search space of the solution because the original constrained problem transformed into an unconstrained problem, and thus, the unknown coefficients of the unconstrained expression can be solved using simple numerical methods. Finally, the proposed algorithm is validated by comparing to a general nonlinear optimal control software GPOPS-II and the traditional indirect numerical method. The results demonstrated that the proposed algorithm is robust to poor initial values, and solutions can be solved in less than 300 ms within the MATLAB implementation. Consequently, the proposed method has the potential to generate optimal trajectories on-board in real time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom