z-logo
open-access-imgOpen Access
Nephelometric determination of turgor pressure in growing gram-negative bacteria
Author(s) -
Arthur L. Koch,
M. F. S. Pinette
Publication year - 1987
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.169.8.3654-3663.1987
Subject(s) - turgor pressure , plasmolysis , osmotic pressure , biophysics , biology , vesicle , osmotic concentration , cell wall , bacteria , osmotic shock , biochemistry , membrane , gene , genetics
Gas vesicles were used as probes to measure turgor pressure in Ancylobacter aquaticus. The externally applied pressure required to collapse the vesicles in turgid cells was compared with that in cells whose turgor had been partially or totally removed by adding an impermeable solute to the external medium. Since gram-negative bacteria do not have rigid cell walls, plasmolysis is not expected to occur in the same way as it does in the cells of higher plants. Bacterial cells shrink considerably before plasmolysis occurs in hyperosmotic media. The increase in pressure required to collapse 50% of the vesicles as external osmotic pressure increases is less than predicted from the degree of osmotically inducible shrinkage seen with this organism or with another gram-negative bacterium. This feature complicates the calculation of the turgor pressure as the difference between the collapse pressure of vesicles with and without sucrose present in the medium. We propose a new model of the relationship between turgor pressure and the cell wall stress in gram-negative bacteria based on the behavior of an ideal elastic container when the pressure differential across its surface is decreased. We developed a new curve-fitting technique for evaluating bacterial turgor pressure measurements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here