z-logo
open-access-imgOpen Access
Methionine recycling pathways and antimalarial drug design
Author(s) -
Janice R. Sufrin,
Steven R. Meshnick,
Arthur J. Spiess,
J. Garofalo-Hannan,
X. Q. Pan,
Cyrus J. Bacchi
Publication year - 1995
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.39.11.2511
Subject(s) - biochemistry , plasmodium falciparum , ribose , purine nucleoside phosphorylase , adenosine , glycogen phosphorylase , biology , biosynthesis , purine , metabolite , stereochemistry , chemistry , enzyme , malaria , immunology
5'-Deoxy-5'-(methylthio)adenosine (MTA) is an S-adenosylmethionine metabolite that is generated as a by-product of polyamine biosynthesis. In mammalian cells, MTA undergoes a phosphorolytic cleavage catalyzed by MTA phosphorylase to produce adenine and 5-deoxy-5-(methylthio)ribose-1-phosphate (MTRP). Adenine is utilized in purine salvage pathways, and MTRP is subsequently recycled to methionine. Whereas some microorganisms metabolize MTA to MTRP via MTA phosphorylase, others metabolize MTA to MTRP in two steps via initial cleavage by MTA nucleosidase to adenine and 5-deoxy-5-(methylthio)ribose (MTR) followed by conversion of MTR to MTRP by MTR kinase. In order to assess the extent to which these pathways may be operative in Plasmodium falciparum, we have examined a series of 5'-alkyl-substituted analogs of MTA and the related MTR analogs and compared their abilities to inhibit in vitro growth of this malarial parasite. The MTR analogs 5-deoxy-5-(ethylthio)ribose and 5-deoxy-5-(hydroxyethylthio)ribose were inactive at concentrations up to 1 mM, and 5-deoxy-5-(monofluoroethylthio)ribose was weakly active (50% inhibitory concentration = 700 microM). In comparison, the MTA analogs, 5'-deoxy-5'-(ethylthio)adenosine,5'-deoxy-5'-(hydroxyethylthio)ade nosine (HETA), and 5'-deoxy-5'-(monofluoroethylthio)adenosine, had 50% inhibitory concentrations of 80, 46, and 61 microM, respectively. Extracts of P. falciparum were found to have substantial MTA phosphorylase activity. Coadministration of MTA with HETA partially protected the parasites against the growth-inhibitory effects of HETA. Results of this study indicate that P. falciparum has an active MTA phosphorylase that can be targeted by analogs of MTA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here