Open Access
Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase.
Author(s) -
Papia Banerjee,
Mir F. Ahmad,
Jeffrey Grove,
Carl J. Kozlosky,
Daniel J. Price,
Joseph Avruch
Publication year - 1990
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.87.21.8550
Subject(s) - map2k7 , c raf , biochemistry , mitogen activated protein kinase kinase , protein kinase a , cyclin dependent kinase 2 , biology , protein kinase domain , kinase , cyclin dependent kinase 9 , p70 s6 kinase 1 , map kinase kinase kinase , microbiology and biotechnology , phosphorylation , protein kinase b , gene , mutant
The molecular structure of a rat hepatoma 70-kDa insulin/mitogen-stimulated S6 protein kinase, obtained by molecular cloning, is compared to that of a rat homolog of the 85-kDa Xenopus S6 protein kinase alpha; both kinases were cloned from H4 hepatoma cDNA libraries. The 70-kDa S6 kinase (calculated molecular mass of 59,186 Da) exhibits a single catalytic domain that is most closely related in amino acid sequence (56% identity) to the amino-terminal, kinase C-like domain of the rat p85 S6 kinase (calculated molecular mass of 82,695 Da); strong similarity extends through a further 67 residues carboxyl-terminal to the catalytic domain (40% identity), corresponding to a region also conserved among the kinase C family. Outside of this segment of approximately 330 amino acids, the structures of the p70 and p85 S6 kinases diverge substantially. The p70 S6 kinase is known to be activated through serine/threonine phosphorylation by unidentified insulin/mitogen-activated protein kinases. A model for the regulation of p70 S6 protein kinase activity is proposed wherein the low activity of the unphosphorylated enzyme results from the binding of a basic, inhibitory pseudosubstrate site (located carboxyl-terminal to the extended catalytic domain) to an acidic substrate binding region (located amino-terminal to the catalytic domain); substrate binding is thereby prevented. S6 kinase activation requires displacement of this inhibitory segment, which is proposed to occur consequent to its multiple phosphorylation. The putative autoinhibitory segment contains several serine and threonine residues, each followed directly by a proline residue. This motif may prevent autophosphorylation but permit transphosphorylation; two of these serine residues reside in a maturation promoting factor (MPF)/cdc-2 consensus motif. Thus, hormonal regulation of S6 kinase may involve the action of MPF/cdc-2 or protein kinases with related substrate specificity.