Open Access
Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: aromatic polycyclic diones hypericin and pseudohypericin.
Author(s) -
Daniel Meruelo,
Gad Lavie,
David Lavie
Publication year - 1988
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.85.14.5230
Subject(s) - hypericin , pharmacology , hypericum perforatum , virus , hypericum , toxicity , in vitro , biology , virology , chemistry , medicine , traditional medicine , biochemistry , organic chemistry
Two aromatic polycyclic diones hypericin and pseudohypericin have potent antiretroviral activity; these substances occur in plants of the Hypericum family. Both compounds are highly effective in preventing viral-induced manifestations that follow infections with a variety of retroviruses in vivo and in vitro. Pseudohypericin and hypericin probably interfere with viral infection and/or spread by direct inactivation of the virus or by preventing virus shedding, budding, or assembly at the cell membrane. These compounds have no apparent activity against the transcription, translation, or transport of viral proteins to the cell membrane and also no direct effect on the polymerase. This property distinguishes their mode of action from that of the major antiretro-virus group of nucleoside analogues. Hypericin and pseudohypericin have low in vitro cytotoxic activity at concentrations sufficient to produce dramatic antiviral effects in murine tissue culture model systems that use radiation leukemia and Friend viruses. Administration of these compounds to mice at the low doses sufficient to prevent retroviral-induced disease appears devoid of undesirable side effects. This lack of toxicity at therapeutic doses extends to humans, as these compounds have been tested in patients as antidepressants with apparent salutary effects. Our observations to date suggest that pseudohypericin and hypericin could become therapeutic tools against retroviral-induced diseases such as acquired immunodeficiency syndrome (AIDS).