Open Access
H 2 CO 3 as Substrate for Carbonic Anhydrase in the Dehydration of HCO 3 -
Author(s) -
Seymour H. Koenig,
Rodney D. Brown
Publication year - 1972
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.69.9.2422
Subject(s) - chemistry , substrate (aquarium) , carbonic anhydrase , carbonic anhydrase ii , molecule , active site , dehydration , diffusion , dehydration reaction , reaction rate , catalysis , enzyme , stereochemistry , crystallography , inorganic chemistry , organic chemistry , biochemistry , thermodynamics , oceanography , physics , geology
Carbonic anhydrase, a metalloenzyme containing one zinc atom per protein molecule of molecular weight 30,000, catalyzes the interconversion of CO2 and HCO3 - in solution. The rate of catalysis, among the fastest known, is pH-dependent, with a pKEnz near neutral. Arguments are presented to show that: (i ) only the high-pH form of the enzyme is active both for the hydration and dehydration reactions (ii ) at high pH there is an H2 O ligand on the metal (not an OH- as is often argued), and (iii ) the substrate for the dehydration reaction is the neutral H2 CO3 molecule. The arguments are based on data in the literature on the nuclear relaxation rates of Cl- ions and water protons in solutions of carbonic anhydrase, on strict application of the principle of microscopic reversibility, and on kinetic considerations. It has been argued that H2 CO3 cannot be the substrate for the dehydration reaction because the observed CO2 production rate is somewhat faster than the maximum rate at which H2 CO3 molecules can diffuse to the active site of the enzyme. However, current models that consider HCO3 - as the substrate implicity require that protons diffuse to the enzyme at an even greater rate, well outside the limitations imposed by diffusion. We consider two mechanisms to obviate the diffusion limitation problem, and conjecture that at high substrate concentration, H2 CO3 reaches the active site by collision with the enzyme molecule, and subsequent surface diffusion to the active site. At lower substrate concentrations, corresponding to [HCO3 - ] <1 mM, generation of H2 CO3 molecules near the enzyme by the recombination reaction H+ + HCO3 - → H2 CO3 can supply an adequate flux of substrate to the active site.