Open Access
Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site
Author(s) -
Ilya Belevich,
Vitaliy B. Borisov,
Jie Zhang,
Ke Yang,
Alexander A. Konstantinov,
Robert B. Gennis,
Michael I. Verkhovsky
Publication year - 2005
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0405683102
Subject(s) - chemistry , heme , electron transfer , electron acceptor , electron transport chain , cytochrome , photochemistry , dithionite , heme a , flash photolysis , stereochemistry , enzyme , biochemistry , kinetics , reaction rate constant , physics , quantum mechanics
Time-resolved electron transfer and electrogenic H(+) translocation have been compared in a bd-type quinol oxidase from Escherichia coli and its E445A mutant. The high-spin heme b(595) is found to be retained by the enzyme in contrast to the original proposal, but it is not reducible even by excess of dithionite. When preincubated with the reductants, both the WT (b(558)(2+), b(595)(2+), d(2+)) and E445A mutant oxidase (b(558)(2+), b(595)(3+), d(2+)) bind O(2) rapidly, but formation of the oxoferryl state in the mutant is approximately 100-fold slower than in the WT enzyme. At the same time, the E445A substitution does not affect intraprotein electron re-equilibration after the photolysis of CO bound to ferrous heme d in the one-electron-reduced enzyme (the so-called "electron backflow"). The backflow is coupled to membrane potential generation. Electron transfer between hemes d and b(558) is electrogenic. In contrast, electron transfer between hemes d and b(595) is not electrogenic, although heme b(595) is the major electron acceptor for heme d during the backflow, and therefore is not likely to be accompanied by net H(+) uptake or release. The E445A replacement does not alter electron distribution between hemes b(595) and d in the one-electron reduced cytochrome bd [E(m)(d) > E(m)(b(595)), where E(m) is the midpoint redox potential]; however, it precludes reduction of heme b(595), given heme d has been reduced already by the first electron. Presumably, E445 is one of the two redox-linked ionizable groups required for charge compensation of the di-heme oxygen-reducing site (b(595), d) upon its full reduction by two electrons.