Open Access
Human mammary epithelial cells exhibit a differential p53-mediated response following exposure to ionizing radiation or UV light
Author(s) -
Karen M Meyer,
Stephen Hess,
Thea D. Tlsty,
Steven A. Leadon
Publication year - 1999
Publication title -
oncogene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.395
H-Index - 342
eISSN - 1476-5594
pISSN - 0950-9232
DOI - 10.1038/sj.onc.1202977
Subject(s) - biology , dna damage , cell cycle checkpoint , cell cycle , microbiology and biotechnology , dna repair , carcinogenesis , cancer research , activator (genetics) , g2 m dna damage checkpoint , dna , apoptosis , gene , genetics
The tumor suppressor protein, p53, plays a critical role as a transcriptional activator of downstream target genes involved in the cellular response to DNA damaging agents. We examined the cell cycle checkpoint response of human mammary epithelial cells (HMEC) and their isogenic fibroblast counterparts to ionizing (IR) and ultraviolet (UV) radiation, two genotoxic agents whose DNA damage response pathways involve p53. Using flow cytometric analysis, we found that both mortal and immortalized HMEC, which contain wild-type p53 sequence, do not exhibit a G1 arrest in response to IR, but show an intact G2 checkpoint. Supportive evidence from Western analyses revealed that there was neither an increase in p53 nor one of its downstream targets, p21WAF1, in HMEC exposed to IR. In contrast, isogenic mammary fibroblasts arrest at the G1 checkpoint and induce the p53 and p21WAF1 proteins following IR. By comparison, HMEC exposed to UV displayed an S phase arrest and induced the expression of p53 and p21WAF1. Our results show that the cellular response to DNA damage depends on both the type of damage introduced into the DNA and the specific cell type.