z-logo
open-access-imgOpen Access
Variability of groundwater levels and total organic carbon in the riparian zone of a boreal catchment
Author(s) -
Lyon Steve W.,
Grabs Thomas,
Laudon Hjalmar,
Bishop Kevin H.,
Seibert Jan
Publication year - 2011
Publication title -
journal of geophysical research: biogeosciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2010jg001452
Subject(s) - riparian zone , hydrology (agriculture) , environmental science , water table , biogeochemical cycle , groundwater , boreal , drainage basin , spatial variability , geology , ecology , habitat , geography , statistics , mathematics , paleontology , geotechnical engineering , cartography , biology
The riparian zone is a narrow corridor where hillslopes (and their associated hydrobiogeochemical processes) interface with the river system. As such, the riparian zone serves as the last piece of landscape with which water interacts as it transitions from being water flowing primarily through the landscape (i.e., shallow groundwater) to water flowing primarily on the landscape (i.e., stream water). This study investigates the spatiotemporal variability in riparian‐zone soil water total organic carbon (TOC) and its relation to the shallow groundwater table using observations from the recently instrumented riparian observatory in the Krycklan catchment study area located in boreal northern Sweden. In general, there is a decrease in TOC concentration with depth down through the soil profile. The rate of this decrease was variable among the six monthly samplings used in this study. The spatial variability of soil water TOC in the riparian zone was connected to the spatial variability of the shallow groundwater levels. This demonstrated the importance of the temporal variation of flow pathways and the mixing of waters from different sources of TOC moving into and through the riparian zone. The coupled variation of the hydrologic and biogeochemical systems raised questions about the ability of simple lumped approaches to accurately predict how in‐stream TOC concentrations will change with climate and/or land use. The integrated sampling approach in the riparian observatory covers both hydrologic and biogeochemical aspects of soil water TOC and provides a basis for development and testing of distributed, physically based transport models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here